
On the triangular Potts model with two- and three-site interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 629

(http://iopscience.iop.org/0305-4470/13/2/026)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 04:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., 13 (1980) 629-636. Printed in Great Britain 

On the triangular Potts model with two- and three-site 
interactions 

F Y Wut and K Y Lin 
Department of Physics, Northeastern University, Boston, Massachusetts 021 15, USA 

Received 26 April 1979 

Abstract. The equivalence of the triangular Potts model having two- and three-site 
interactions with a 20-vertex Kelland model is rederived using a graphical method. The 
conjectured critical point of this Potts model is shown to agree with the known results in two 
instances. 

1. Introduction 

The Potts model (Potts 1952) has remained to this date one of the most intriguing lattice 
statistical models of phase transitions. While its exact solution is not yet known, 
significant progress has been made in recent years in exact analyses of its properties. 
The breakthrough came in 1971 when Temperley and Lieb (1971) established a 
remarkable equivalence of the nearest-neighbour Potts model on the square lattice with 
an ice-rule model, a fact that made possible the exact determination of its critical 
properties (Baxter 1973). These considerations have recently been extended to the 
Potts model with two- and three-site interactions (Baxter et a1 1978). In these analyses 
an operator method has been used to establish the equivalence of the Potts model with 
an ice-rule model. A simpler and more direct graphical analysis for proving this 
equivalence was later developed by Baxter et a1 (1976) for the pure two-site problem. 
In view of the usefulness and richness of the new results of Baxter etal (1978), it appears 
desirable to extend the graphical approach to models with two- and three-site inter- 
actions. This is the subject matter of the present paper. 

We shall proceed in a way which differs slightly from that of Baxter etal (1976). We 
define, in 8 2, a five-vertex model on the triangular lattice, and show in Q 3 that this 
vertex model is equivalent to the Potts model under consideration. A simple symmetry 
of the vertex model then leads to a duality relation for the Potts model, which, in turn, 
determines the Potts critical point. This conjectured critical point is shown to reduce to 
the known exact results in two instances. In Q 4 we show that the five-vertex model is 
also equivalent to a Kelland (1974) model. It follows that the Potts model with two- and 
three-site interactions is equivalent to an ice-rule Kelland model, thus rederiving the 
result obtained by Baxter et a1 (1978). 

t Work supported in part by the National Science Foundation. 
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2. Five-vertex model on the triangular lattice 

Consider a triangular lattice 2' of N sites. Cover all edges of 3' with bonds and join the 
ends of bonds so that the bonds form non-crossing paths. A typical joining of the bonds 
is shown in figure 1. Note that the bonds form closed, non-intersecting polygons. The 
six bonds incident at a vertex can join in only five distinct ways. These five configura- 
tions are shown in figure 2. 

Figure 1. A typical bond graph on 8'. The bonds form closed, non-intersecting polygons. 

C! c2 c3 CL c5 

Figure 2. Vertex configurations of the five-vertex model. 

Associate weights ci, i = 1,2 ,  . ~ . , 5, with these five configurations as shown in figure 
2. Further, with each polygon on 2" we associate a weight z.  The partition generating 
function for this five-vertex model is defined to be 

212345 = Z ( Z ;  C1, c2, c37 c4, c.5) 

where the summation is taken over the 5N polygonal configurations, or bond joinings, 
on LE", ni is the number of vertices of type i satisfying 

and p is the number of polygons. The partition function (1) possesses the obvious 60" 
rotational symmetry 

212345 = 231254 = 223145 = 212354 = 231245 = 223154- (3) 
It follows that 2 is invariant under the cyclic permutations of the indices 1 , 2 , 3 ,  and/or 
4,5. 

3. Reduction to a Potts model 

We now show that the five-vertex model (1) is equivalent to the Potts model with two- 
arid three-site interactions considered by Baxter et a1 (1978). 
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There are two kinds of faces in the triangular lattice 9, namely, the up-pointing and 
down-pointing triangles. Following Baxter et a1 (1976), we shade one kind of the faces, 
say the down-pointing triangles, and regard such shaded areas as ‘land’, and the 
remaining unshaded areas as ‘water’. Then, as shown in figure 3, a typical polygonal 
configuration P will consist of connected lands surrounded by water. 

Next, we place a site at the middle of each of the N shaded triangles, and join as 
shown in figure 3 the two or three neighbouring sites whose lands are connected. The 
connecting lines are either boomerang- or Y -shaped. Consider now the triangular 
lattice 9 formed by these N sites. The partition function (1) can also be interpreted as 
defined on 2 as follows. 

(1) Each of the N up-pointing triangular faces of 9 can independently take one of 
the five configurations shown in figure 4. This specifies the configuration Y. 

(2) The numbers cI and ni are, respectively, the weight and multiplicity of the ith 
vertex configuration, i = 1 , 2 , .  . . , 5 ,  in P. 

(3) p = C +S, where C and S are, respectively, the numbers of connected 
components, including isolated sites, and circuits in P. 

Figure 3. The same bond graph as in figure 1. The down-pointing triangular faces are 
shaded showing connected lands surrounded by water. The circles form a triangular lattice 
9. 

C l  c2 c3 CL c5 

Figure 4. The five possible bond configurations for the up-pointing triangular faces of 2’. 

Here, use has been made of the fact that, for a given P, each closed polygon on 2?’ is the 
outside perimeter ,of either a circuit or a connected component of the associated 
configuration on 9. 

Consider a q-state Potts model on 2 whose interactions consist of two-site inter- 
actions cl ,  € 2 ,  e3 and three-site interactions E among every three sites surrounding an 
up-pointing (triangular) face. This is shown in figure 5 .  The Hamiltonian now reads 

where the summation is over all up-pointing faces of 2? and 
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Figure 5. The Potts model on 2 with two- and three-site interactions at each shaded 
triangle. 

Here, S a b  = &((a, .$b), 8abc  = S&bc, and (a  = 1 , 2 ,  . . . , q refer to the spin state at the 
site a. 

Following Baxter et a1 (1978),  we write 

eXp(-pEabc) = 1 + f i S b c  + f Z a c a  + f 3 S a b  f YSabc  

fi = exp(&) - 1 

( 6 )  
where 

g = exp(pe) - 1 

Y = f 1 f 2 + f z f 3 + f 3 f 1  + f 1 f z f 3 + g ( l  + f d l  +fN + f 3 )  

and p = l / k T .  The partition function of the Potts model is 

( 7 )  

Z P o t t s ( q ; f l , f Z , f 3 ,  y ) = c  I - I ( l + f l S b c f f Z S c a + f 3 S a b f Y S a b c )  (8) 

where the summation is over the qN spin states. The product is taken over the N shaded 
triangles shown in figure 5. 

Expand the product in (8). A natural graphical representation of the expansion is as 
follows. To each factor fiSab associate a boomerang-shaped bond connecting the sites a 
and b, and to each factor y6,bc associate a Y-shaped bond connecting the sites a, b and c. 
Since these are precisely the configurations shown in figure 4, we can write, as in (l), 

A 

( 9 )  
C n  n 

Z P o t t s  = c q f 1 ‘ f  Z’f 3n3Y 
P 

where the summation is taken over the 5N configurations P on 9. Also, since fi 
connects two sites and each Y connects three sites, we have the Euler relation 

N + S  = C + nl  + nz+n3+2nS.  (10) 

(1 1 )  

(12)  

Eliminating N and S from ( 2 ) ,  (10) and the relation p = C + S, we obtain 

c = $(p + 124- 125). 

Z P o t t s ( q ;  f l ,  f i ,  f 3 ,  Y )  = z(Jq; f l ?  f2, f 3 ,  Jq, y / J i ) *  
Substituting (11) into ( 9 )  and comparing with ( l ) ,  we arrive at the identity 

This states that the Potts model (4) is equivalent to the five-vertex model ( l ) ,  a result we 
set out to prove. Note that there is no loss of generality in taking z = c4 in (l), since Z is 
homogeneous in ci. 
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The invariance of 2 1 2 3 4 5  under the interchange of the indices 4 and 5 now implies 
the following duality relation for Zpot,, (Baxter et a1 1978): 

ZPotts(q;fl,fZ,f3, y )  = (Y/q)NZpott , (q;f~,f ; , f ; ,  Y'), (13) 

f l  = c l f l y  y ' = q 2 I y .  (14) 

where 

The transformation (13) maps the partition function at a temperature T > T, into 
one at another temperature T < T,, and vice versa, where T, is determined by the fixed 
point 

of the transformation. In the isotropic case (e1 = e2 = e3) (15) reads 

3f2 +f3 + g( 1 +f)3 = q (16) 

and we plot (16) in figure 6 to give T, as a function of (Y = €/e1. Along the (Y = 0 axis the 
T, in figure 6 is known to be exact and unique (Hintermann et a1 1978). If, for (Y # 0, 
one assumes the transition also to be unique, then the critical point is given by (16). We 
expect a similar uniqueness argument to lead to the critical condition (15) in the general 
anisotropic case. Indeed, the general Potts model (4) is exactly soluble for q = 2. In this 
case the state & may be described by the Ising variables u, = *l and we write 

= $(l + uaub). The Potts model is then exactly equivalent to a triangular Ising model 
whose interactions are Ji = +ei +$e. From the known solution of the triangular Ising 
model (Houtappel 1950), one verifies that its critical condition is indeed (15) in the 
r eg ione+e i+e j30 ,  i # j , o r  

U 

Figure 6. The transition temperature T, in the isotropic case, T, in units of e J k  and 
a = €/e1. The straight line a + 2 = T, In 3 for q = 2 is exact. 
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Since the Ising critical condition is different from (15) outside the region (17), the 
validity of (15) will generally be limited. It appears safe, however, to expect (15) to hold 
at least for positive g and fi. We note that (15) indeed reduces to the exact results of 
Hintermann et a1 (1978) for g = 0 and fi B 0. 

4. Equivalence with an ice-rule model 

In this section we show that the five-vertex model (1) is also equivalent to an ice-rule 
model, thereby deriving the equivalence of the latter with the Potts model. 

Consider the partition generating function (1) for the five-vertex model. Write 

, ? = t 3 + r 3  (18) 
and expand the factor ( t 3 + t - 3 ) p  in (1). Following Baxter et a1 (1976), a natural 
graphical representation of this expansion is to direct the polygons in P and associate 
the weights t3 and t-3 to the directed polygons. As shown in figure 7, let t 3  ( t - 3 )  be the 
weight of a clockwisely (counterclockwisely) directed polygon. The polygonal weights 
t*3 can also be associated with the vertices with the following rule (Baxter et a1 1976): 
each directed line turning an angle 8 to the right (left) carries a weight t3e/2""(t-3e/2a),  
This leads us to consider a vertex problem on 9' whose edges are directed. Since there 
are always three arrows out and three arrows in at each vertex, we are led to the Kelland 
(1974) model, namely, the 20-vertex ice-rule model on 3, Collecting the weights of 
those vertices having the same arrow arrangement, we obtain, as shown in figure 8, the 
following equivalence: 

2 1 2 3 4 5  = Z K e l l a n d ( U b  U :  1, (19) 
Here &elland is the partition function of the Kelland model. The vertex weights of the 
Kelland model are obtained from figure 3: 

U 1  = c 2  U 2  = c 1  U 3  = c3 

us = c3t2 + c5t-' 3 
U 4  = c 1 +  c 2  + c3 + C 4 t  + c 5 r 3  

U 6  = C 3 t - 2  + C 4 t  U 7  = czt  + c 4 t - I  

us = czt-? + C 5 t  u9 = c l t2  + c5r-l 

u l o = C l t - z + C 4 t  U :  = ui ( t+  t - l ) .  

2 

The configuration of U :  is the same as that of ui with all arrows reversed. 

Figure 7. A typical directed polygonal configuration on 9'. Each polygon can be directed 
either clockwisely or counterclockwisely carrying respective weights t 3  and C3. 
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c3 P t C ,  t -1 

c p +  CL f 

c2 t2+CLf- ’  

c2 t -21- c5 f 

c, ? + c.; t” 

c, t-?+ c1 f 

Figure 8, Vertex weights and vertex decompositions of a Kelland model. 

The equivalence (20) is valid for general ci and t, or t. Specialising to the Potts 
model for which, from (12), 

2 = v q  c1 =f1 c2 = f 2  c3 = f 3  cq= Ji cs=y /Jq ,  (21) 
(19) leads to an equivalence of the Potts model with a Kelland model. If, without 
changingZKelland, we further introduce in (20) a factor t’” (t-’”) to each arrow entering 
(leaving) a vertex in the three-direction or leaving (entering) in the one-direction, the 
resulting ui and U ;  reduce exactly to those obtained by Baxter et a1 (1978). We have 
thus rederived their result. 

/- 

5. Summary 

We have established from a graphical consideration the equivalence of the triangular 
Potts model (4) with a Kelland model whose parameters ui and U: are given by (20) and 
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(21). The conjectured critical point of this Potts model, 

f l f 2  + f 2 f 3  + f 3 f l  + f i f 2 f 3  + g( 1 +fl>( 1 +f2)( 1 +f3) = 4, 

agrees with the exact results for q = 2 and/or for g = 0. 
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